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Abstract. Starting from the phenomenological model for sand ripple formation developed in [1], we pro-
posed a new interpretation in the light of recent experiments. Furthermore, we derive, close to the threshold
of ripple instability, a nonlinear equation for the spatio-temporal evolution of the sand bed profile, which to
leading order has a quadratic nonlinearity. This equation is identical to that derived recently on the basis
of geometry and conservation law [2]. Our derivation connects the coefficients of the nonlinear equation
to the underlying physical mechanisms (reptation length...). This equation reveals ripple structures which
then undergo a coarsening process, as observed in wind tunnel experiment. Small, fast moving ripples are
absorbed by larger, slower forms resulting in a growth of the mean wavelength.

PACS. 83.70.Fn Granular solids – 81.05.Rm Porous materials; granular materials –
47.20.-k Hydrodynamic stability

1 Introduction

A flat sand surface, when subjected to moving air, is usu-
ally unstable and gives rise to fascinating regular patterns
resembling surface waves. These patterns can be classified
into two distinct structures differing by their length scale:
ripples (small structures) and dunes (large ones). Here, we
shall focus on the formation and dynamics of the smaller
class of bedforms, that are the ripples. Although these
patterns are commonly observed in nature (like in deserts
or coastal regions), no general theory exists for the com-
plex interaction of wind and sand grains responsible for
the formation of aeolian ripples.

The study of aeolian ripples has been largely guided
by Bagnold’s seminal work [3]. We find it worthwhile re-
calling the main outcomes of Bagnold about the process
of aeolian sand transport. The aeolian sand transport can
be described in terms of a cloud of grains leaping along
the sand surface. According to Bagnold [3], there are two
distinct modes of transport: (i) saltation and (ii) repta-
tion (or surface creep using the terminology of Bagnold)1

(i) The saltating grains are those capable of rebounding
or splashing up other grains. One can think of saltating
grains as the high-energy subpopulation of the grains in
motion. These grains regain from the wind the energy lost
when rebounding and can therefore travel over long dis-
tances. Their trajectory in the air is determined by several
intricate parameters such as the wind velocity profile, air
friction and initial energy of the grain when it leaves the
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1 One should also add a third mode of transport which is

suspension and concerns only very small grains.

sand bed. Bagnold identified a characteristic path length
in saltation. One of the salient features is the flat incident
angle which ranges from 10◦ to 15◦. (ii) The reptating
grains represent the low-energy grains. They are ejected
from the bed under the impact of the saltating grains and
have relatively short and low trajectories so that they can
not regain energy from the wind.

Bagnold work on aeolian transport has been refined by
subsequent workers. Recent experiments [4,5] and numer-
ical simulations [6–8] have focused on the coupling be-
tween saltation impacts and surface grain motion (i.e.,
reptation). They report that the bed impact of one saltat-
ing grain typically results in one energetic ricocheted
grain and a large number of emergent grains (i.e., low-
energy ejecta). The ricocheted grain leaves the surface
with roughly two-third of the impact velocity while the
emergent grains have a mean ejection speed less than 10
per cent of the impact speed and therefore have a short
trajectory.

Other works [9] have focused on the modification of
the wind profile within the saltation curtain. It was found
that during steady-state saltation, the aerodynamic stress
at the bed is reduced to below that necessary to en-
train grains from the bed. This important result, already
mentioned by Bagnold, has led to the following major
conclusion: although aeolian saltation is initiated by aero-
dynamic forces, the maintenance of saltation relies essen-
tially through impacts. In other words, the ejection of
grains from sand bed is essentially induced by the impact
of saltating grains.

Starting from the knowledge of saltating transport,
several authors attempt to elaborate a theory in order
to explain the formation of aeolian ripples. The first
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explanation was proposed by Bagnold [3]. He argued that
the spatial variation of the reptating flux is responsible for
the growth of ripples. Indeed, he put forward the idea that
the mass flux of reptating grains at any point of the surface
is proportional to the flux of saltating grains impacting the
sand bed at that point. If a small deformation of the sur-
face occurs, the windward slope will be more exposed to
the incoming saltating grains than the lee side. A greater
number of reptating grains will therefore be driven up to
the stoss slope (through reptation motion) than down to
the reverse slope. As a result, the deformation will grow.
Bagnold moreover pointed to a close correspondence be-
tween saltation path lengths and ripple spacing. A more
quantitative analytical model has been proposed by An-
derson [10] which describes more precisely the coupling
between the saltation impacts and the surface grain mo-
tion (i.e., reptation). Such a model predicts that a flat sur-
face is unstable in favour of ripple structure. The fastest
growing mode, which is expected to give the wavelength
of the ripple, is found to be of order of several times the
mean reptation length, in contradiction with Bagnold vi-
sion. This analytical model has been refined later on by
Hoyle [11].

Numerous numerical models [12,13] have been also
developed. Anderson [12] built his own numerical model
confirming the prediction of his analytical model and sug-
gesting that the ripple wavelength increases in course of
time (the final spacing can be several times larger than the
initial one) which is consistent with the experiments [12].
Nishimori et al. [13] proposed a model where the saltation
length varies according to which height the saltating grain
has taken off. They find a ripple pattern whose wavelength
is proportional to the mean saltation length but can not
account for the evolution of the ripple spacing in course
of time.

The purpose of the present contribution is to extend
Anderson model [10] (which to our mind is the most faith-
ful to experimental facts) to account for the nonlinear de-
velopment of the sand bed structure after the initiation
of the ripple instability. Anderson analysis is based on
a linear stability analysis which is expected to be valid
only in the first stages of the instability initiation and
can not predict the evolution of the ripple pattern nei-
ther the final morphology, wavelength and velocity of the
structure. Starting from the phenomenological model de-
veloped in [1] which is based on the description of the
coupling between grains at rest and grains in motion, we
derive a nonlinear equation for the evolution of the sand
bed profile close to the ripple instability threshold. This
equation takes the simple following canonical form

ht = −∂2
xh− ∂

4
xh+ ν∂3

xh+ ∂2
x[(∂xh)2] (1)

where h(x, t) measures the height of the sand bed profile.
As to be seen below, this equation can always be reduced
to an equation with only one dimensionless parameter de-
noted ν. It has been shown [2] that this ripple equation
can be obtained simply from general considerations based
on geometry and conservation. In particular, the nonlin-
ear term of equation (1) can be directly inferred from mass

conservation. Of course, this is not the only nonlinear term
compatible with mass conservation but it turns out to be
the leading nonlinear contribution. One can note also that
this equation differs from that proposed by Hoyle [11]. In-
deed, in the Hoyle model the nonlinear contribution is of
the form [1− (∂xh)2]−3/2∂xxh (with ∂xh ∼ 1). This non-
linear contribution is inferred to avalanche process that we
do not believe to be pertinent in the formation of aeolian
ripples.

In this paper, we derive equation (1) from a physical
model which allows us to evaluate precisely the coefficients
of each term appearing in the equation but also to relate
them to the underlying physical mechanisms. This non-
linear equation reveals ripple structures which undergo a
corseaning process, as studied in [2]. This coarsening pro-
cess can be easily interpreted in terms of ripple coalescence
and seems to be fully consistent with observations in wind
tunnel experiments [12].

The paper is organized as follows. In the second sec-
tion, we recall the view adopted for describing the salta-
tion process and present our model inspired from that
proposed by Anderson. Section 3 is devoted to the sta-
bility analysis of a flat sand bed exposed to a stationary
saltation process while in Section 4 we derive a nonlinear
equation for the subsequent spatio-temporal evolution of
the ripple pattern. Conclusion and prospects are given in
the last section.

2 Model

The view adopted here to describe the saltation process
conforms with that of most previous studies in that the
motion of grains comprising aeolian ripple is believed to
result not directly from fluid forces imposed by the air but
rather from the impact of saltating grains that are them-
selves accelerated by the wind. Although aeolian saltation
must be initiated by aerodynamic forces, it is the subse-
quent impacts of saltating grains that appear to be respon-
sible for most of the ejection of grains into the airstream
during fully developed saltation.

The phenomenological approach we consider is the
same as that developed in [1]. It is based on the descrip-
tion of the interaction between the moving grains (i.e.,
saltating and reptating grains) and the grains at rest in
sand bed. Unlike the model in [1], we find more realistic,
according the previous studies on saltation, to distinguish
two types of moving grains, that is the saltating grains of
long high-energy trajectories and the low-energy splashed
grains travelling in reptation. This distinction will allow
us to relate easily the phenomenological coefficient intro-
duced in our model with the observed phenomena. The
impact of saltating grains can be seen as the driving force
which governs the motion of surface participating in ae-
olian ripple growth and translation. In the so-called fully
developed saltation, erosion is counterbalanced by deposi-
tion and the population of saltating grains is almost con-
stant. In essence, we assume that the saltating grains have
zero probability of death during impact: it reproduces it-
self perfectly. The saltating grains can be considered just
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as spectators (the saltating population does not exchange
grains with the reptating population) which serve only to
bring energy into the system. Therefore, we will only con-
sider an exchange of grains between the reptating grains
and the grains at rest. We call the reptating grains density
R(x, t) where x is the coordinate in the direction of the
wind and t the time. It will assume here that the system is
translationally invariant in the direction transverse to the
wind. The grains at rest are measured in terms of the local
height h(x, t) of the static bed. In the thermodynamical
limit, the dynamical equations of h and R read

∂tR = −V ∂x(R) + Γ [R, h] (2)

∂th = −Γ [R, h] (3)

where V the mean velocity of the reptating grains in the
wind direction.

Γ describes the exchange rate between the reptating
grains and the grains at rest and depends a priori on R
and h. In comparison with the model in [1], we omit the
diffusion term in the first equation, which is not pertinent
for our purpose, as to be seen further below. Note that R
has been defined such that it has the same dimension as h
(R can be thought as the width of grains which have been
removed from the static bed).

We should write now the expression for Γ by using phe-
nomenological physical arguments. Γ can be split into two
terms, one describing the deposition process of the rep-
tating grains and the other modelling the ejection of the
reptating grains under the impact of the saltating grains
and occasionally under the wind force: Γ = Γdep + Γej.

(i) We have seen that the ejection of grains in steady-
state saltation is essentially due to impacts. The rate of
ejection should therefore largely depend on the flux of
saltating grains impacting the sand bed. In a smaller ex-
tent, one can also expect that a small part of the reptating
grains are set in motion thanks to the wind force. The flux
of saltating grains impacting the sand bed at one point is
dependent on the local orientation of the sand surface at
that point with respect to the incidence direction of the
impacting grains. In addition, it is reasonable to think of
that the efficiency of ejection mechanism is sensitive to the
local curvature of the sand surface: grains are harder to
dislodge upon impact in troughs than at the top a crest.
Identically, the direct entrainment of grains by the wind
should be a priori dependent on the local slope and cur-
vature of the bed profile. One can thus write:

Γej = Γ a
ej + Γ b

ej (4)

with

Γ a
ej = α0(1 + α1∂xh− α2∂

2
xh), (5)

Γ b
ej = β0(1 + β1∂xh− β2∂

2
xh), (6)

where αi and βi are constant and positive coefficients .
(The wind has been assumed to blow in the same direction
as the oriented axis (0x)). α0 is proportional to the flux
of the saltating grains and β0 to the wind force.

The coefficients α0 and α1 can be simply deduced from
the features of the saltating grains. According to Bagnold

observations [3], the incident angle of impacting grains ap-
pears to remain remarkably constant. The saltating grains
can thus be seen as a rain of sand grains impacting the
surface with a constant angle. Assuming that the num-
ber N of ejected grains per unit time from the surface at
position x is proportional to the flux of saltating grains
perpendicular to the surface at that point, we get

N ' nd2J tan θ(1 + cot θ∂xh) (7)

where n is the number of grains ejected per saltating grain,
d is the diameter of the grains, J is the saltation flux and θ
the angle of incidence with respect to the horizontal. From
that expression, we directly deduce that α0 = nd3J tan θ
and α1 = cot θ. The estimation of the coefficient α2 which
reflects curvature effect is more delicate but it can be in
principle also measured through appropriate experiments.

The coefficients βi are related to the wind force. Usu-
ally, as seen before, the direct dislodgement of the surface
grains by the wind is weak because the wind is screened
by the saltating grains. Indeed, it has been found from
simulations [9,10] that the fluid entrainment is unimpor-
tant for flat surface. However, we think that the direct
dislodgement by the wind of a grain located on the top
of a bump should be a significant process (as a tip ef-
fect in electrostatic). The wind, even if it is weak, tends
to smooth a surface made of grains. As a consequence, we
expect that the wind entrainment is essentially dominated
by the curvature effect: Γ b

ej ' −β∂
2
xh where β = β0β2.

(ii) The deposition process concerns only the reptating
grains. We will assume that the rate of deposition at point
x is proportional to the number R of reptating grains at
that point2 so that we can write

Γdep = −Rγ (8)

where γ−1 represents the typical time during which the
reptating grains are moving before being incorporated to
the sand bed. This life time can be interpreted in terms of
the characteristic reptation length l which can be defined
by l = V/γ where V is the mean speed of the reptating
grains along the wind direction. l is a quantity which can
be evaluated from experiments. Given the energy and the
incident angle of the saltating grains, l can be measured as
a function of the topography of the sand bed (i.e., the local
slope and curvature of the bed profile). This is precisely
the purpose of a new experiment carried out in the Bideau
group [15]. One expect a priori that l should be larger on
a slope facing the wind (a reptating grain on a stoss face
can gain an additional energy from the wind) than on a
lee slope. Using the same intuition, we can also argue that
the reptation length is again larger on the top of a crest
that in a through. These two effects can be modelled as
follows through the life time γ−1

γ = γ0(1− γ1∂xh+ γ2∂
2
xh). (9)

2 One assumes implicitly here that the deposition process is
a local one. It is justified if the characteristic lengthscale of
interaction (which is here the reptation length as to be seen
below) is smaller than the wavelength of the ripple structure.
This is generally the case for aeolian sand ripples.
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where the coefficients γi are taken to be positive. γ−1
0 is

nothing but the life time for the reptating grains moving
on a sand flat surface. As to be seen later on, the sign of
γ1 is very important because it determines the sign of the
nonlinear term in the equation (1) for the sand bed profile
evolution and therefore the shape of the ripple.

In the light of the previous considerations, we will as-
sume Γ to be of the following form

Γ = α0(1 + α1∂xh+ α2∂
2
xh) + β∂2

xh

−Rγ0(1− γ1∂xh+ γ2∂
2
xh). (10)

The set of equations (2, 3, 10) describes completely our
system. Note that these equations are nonlinear and non
trivial dynamics is expected. Some essential features of the
model can be first investigated by linearizing the system
in the vicinity of the situation where the sand bed is flat
(h = h0). In this case, the density of the reptating grains
is simply given by setting Γ = 0 which yields R0 = α0/γ0.

3 Linear stability analysis

We present here briefly the linear stability analysis of a
flat sand bed. We consider small perturbations of R and h

R = R0 +R1 (11)

h = h0 + h1 (12)

where h1 and R1 are of the form eikx+Ωt (k is the wave
number of the perturbation and Ω its growth rate). Plug-
ging equations (11, 12) into the motion equations and ne-
glecting the nonlinear terms, we get a compatibility con-
dition which yields

Ω=−γ0l0ik
l0R0(α1+γ1)ik+l0R0(α2+γ2)k2−(β/γ0)k2

1+l0ik
(13)

where l0 = V/γ0 stands for the characteristic reptation
length for a flat surface. It is a simple matter to show that
the most dangerous modes are those of longwavelength (as
compared to the reptation length). Therefore we expect
the nonlinear behaviour close to the threshold of ripple
formation to be dominated by these modes. In the limit
of longwavelength perturbation, the growth rate simply
reads

Ω

γ0
' ε(α1 + γ1)l20k

2 − εl20[(α2 + γ2)

+ (α1 + γ1)l0](ik3 + l0k
4)− l0(β/γ0)(ik3 + l0k

4)
(14)

where ε = α0/V . It can be seen that at small k, the sign of
Ω is determined by that of the coefficient of the quadratic
term. As (α1 + γ1)ε is positive, the flat sand surface is
always unstable. There exist a band of unstable wave vec-
tors ranging from 0 to a cut-off kc (see Fig. 1). However, in
the particular case where ε = 0 (i.e., α0 = 0; it means that

0.0 0.5 1.0 1.5
Wave number k/kc

-1.5

-1.0

-0.5

0.0

0.5

1.0

R
e(

Ω
)

Fig. 1. Real part of the growth rate as a function of the wave
number. Full line: unstable. Dashed line: marginal stability.

the wind is too weak to maintain saltation), the surface is
marginally stable.

We can examine the case close the instability threshold
(i.e., ε � 1). We will see later on that ε turns out to be
smaller than unity for standard conditions of saltation. In
this limit, we simply have

Re(Ω) ' γ0

[
ε(α1 + γ1)l20k

2 − l30lck
4
]

(15)

Im(Ω) ' γ0l
2
0lck

3 (16)

where we have set lc = β/V . lc has the dimension of a
length and plays the role of a cut-off length which pre-
vents the surface from arbitrary small deformations. In-
deed, lc appears as the prefactor of the quartic term of
equation (15) which dominates at short wavelengths and
therefore stabilizes the structure. lc can be seen as the
shortest length of deformation of the surface. We can eas-
ily evaluate the most dangerous mode kmax (that is the
mode which has the fastest growth rate). The wavelength
of the most dangerous mode is found to be

λmax =
2π

kmax
= 2π

√
2l0lc√

ε(α1 + γ1)
· (17)

One can note that the most dangerous mode which is ex-
pected to dominate the subsequent evolution of the pat-
tern is given by the geometrical average between the repta-
tion length l0 and lc. (One should also point out that this
result is different from that in [1] where the wavelength of
the most dangerous mode is found to be of order of the
mean hopping length defined as the average between the
long jumps of the saltating grains and the short jumps of
the reptating grains. Let us try here to estimate λmax. The
estimation of the order of magnitude of lc is not trivial.
However, it is the smallest lengthscale of our problem. So,
if we assume that lc is at least ten times smaller than the
reptation length l0, λmax ∼ 6l0 for ε ' 0.1 which seems
reasonable.

Finally, the non-zero imaginary part of the growth rate
indicates that the unstable modes propagate along the
sand surface. The propagation speed of the modes k is
simply given by Vd = −Im(Ω)/k. For the most dangerous
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mode, we get

Vd =
ε

2
(α1 + γ1)V. (18)

Two remarks are in order. First, one can note that the rip-
ples propagate in the same direction as the wind. Second,
according to experimental observations [3], the propaga-
tion speed of the ripples is much smaller than the veloc-
ity of the surface grains (i.e., reptating grains). One can
therefore conclude that the assumption ε� 1 is justified.

4 Nonlinear analysis

In order to investigate the subsequent development of
the instability, the nonlinear terms neglected in the lin-
ear analysis should be taken into account. To do this, a
nonlinear analysis is needed. By means of a multi-scale
analysis, it is possible to perform a nonlinear development
in the vicinity of the instability threshold. We have at
our disposal a small parameter, that is ε which measures
the distance from the instability threshold. We have seen
from the linear analysis that the growth rate is given by
Ω ∼ εk2−k4 +ik3. The fastest growing mode corresponds
to a wave number which scales as

√
ε and the correspond-

ing growth rate scales as ε2. The imaginary part of Ω
would scale as ε3/2 and it dominates in principle. This
means that in a multi-scale analysis, we have to introduce
a short time associated with the propagation and a long
time that determines the time scale of the amplification or
attenuation of the instability. The total time is T = T1+T2

where T1 = ε3/2t is the short time and T2 = ε2t the long
time. We also introduce a slow spatial variable X =

√
εx.

The strategy is to expand the profile h of the sand surface
and the density R of the reptating grains in power of ε1/2

h = h1 + ε1/2h2 + εh3 + ..., (19)

R−R0 = ε(R1 + ε1/2 + ...). (20)

We note that the first term in the expansion R−R0 scales
as ε. This is due to the fact that (R−R0) ∼ εh as dictated
by the linear analysis.

The scheme is to use the equations (2, 3) to deduce
successively high-order contributions in power of ε. The
first non-trivial contributions come to order ε3/2.

R1 = −
β

γ0
∂2
Xh1, (21)

∂h1

∂T1
= l0β∂

3
Xh1. (22)

To next order, we get

R2 = −
β

γ0
∂2
Xh2 + l0(α1 + γ1)∂Xh1

+ l0
β

γ0
∂3
Xh1 + β

γ1

2γ0
∂X [(∂Xh)2], (23)

∂h1

∂T2
+
∂h2

∂T1
= l0β∂

3
Xh2 − γ0l

2
0(α1 + γ1)∂2

Xh1

− l20β∂
4
Xh1 + l0βγ1∂

2
X [(∂Xh1)2]. (24)

Combining the above equations and setting H = h1 +
ε1/2h2 and R= R1 + ε1/2R2, we obtain

R = −
β

γ0
∂2
XH + ε1/2[l0(α1 + γ1)∂XH

− l0(β/γ0)∂3
XH + β(γ1/2γ0)∂X(H2

X)], (25)

∂H

∂T
= l0β∂

3
XH + ε1/2[−γ0l

2
0(α1 + γ1)∂2

XH

− l20β∂
4
XH + l0βγ1∂

2
X(H2

X)]. (26)

Equation (26) describes the nonlinear evolution of the
sand surface. Let us make a few comments about this
equation. (i) Seeking perturbations of the form h '
eikX+ΩT , we recover the linear spectrum Ω = −l0βik3 +
ε1/2[γ0l

2
0(α1 + γ1)k2 − l20βk

4] found in the linear stability
analysis. (ii) After an appropriate rescaling of the vari-
ables H, X and T , only one parameter survives and equa-
tion (26) can be written in the canonical form (Eq. (1)).
It is important to note that equation (1) has been de-
rived in [2] by evoking only geometry, conservation, and
locality (which is justified as long as the dominant length
scale is the reptation one). In another paper [14], these
authors give a class of nonlinear equations derived from
these concepts. They distinguish between situations with
and without conservation and anisotropy (due to wind
for example). With conservation and anisotropy they ob-
tain equation (1). In the absence of conservation and
with anisotropy – on the scale of wavelength of interest
– (strong erosion), they show that ripples may be de-
scribed by another class of equation, known as the Benney
equation. (iii) ∂2

x(h2
x) is the dominant nonlinearity which

appears in our multi-scale analysis. If one pursues the de-
velopment to higher order, the nonlinearity which comes
next is ∂x(h2

x). This nonlinearity is intrinsically of smaller
order than that found to the dominant order (∂x(h2

x) ∼
ε3/2 whereas ∂2

x(h2
x) ∼ ε2). However, it turns out that

this nonlinearity appears with a coefficient containing the
small parameter ε, which removes the apparent contradic-
tion.

Numerical integration of this nonlinear equation re-
veals an evolution towards a ripple pattern (see Fig. 2).
One can note first that the stoss slope (i.e., the one fac-
ing the wind) is steeper than the lee slope as observed
for aeolian sand ripples. Had the sign of the nonlinear
term been negative (i.e., γ1 < 0), the stoss slope would
have been more gentle than the lee slope contrary to field
observations. Indeed, changing the sign of the nonlinear
term corresponds to an up-down operation in Figure 2.
We recall here that a positive γ1 means that the rep-
tation length is greater on a slope facing the wind that
on a lee slope. Second, one should say that contrary to
the impression given by Figure 2, the pattern is not sta-
tionary; the ripple spacing evolves in course of time. The
wavelength is first close to that of the most dangerous
mode. As shown in [2], at long time the structure is found
to coarsen producing wider and wider ripples. At longer
time, the coarsening slows down dramatically. This work
is in progress and an extensive study of the evolution of
the ripple pattern (height, wavelength and propagation
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Fig. 2. The ripple profile at different times. The consecutive
snapshots have been shifted upward to show the drift.

speed) will be presented in the future. However, we can
ascertain that these features agree with field observations
and wind tunnel studies [12] which show that the ripple
wavelength tends to increase with time by ripple merger,
most rapidly at first and slowly thereafter.

5 Conclusion

In summary, we have shown that equations (2, 3) which
are phenomenological but motivated by clear physical pro-
cess allows us to describe the ripple instability as well as
its subsequent development. We have derived a nonlin-
ear equation describing the dynamical evolution of a sand
surface submitted to wind blow. This equation reveals rip-
ple structures which then undergo a coarsening process
as observed in wind tunnel experiments. One task for fu-
ture is the precise investigation of the evolution of the
wavelength, propagation velocity and height of the ripple
structure in course of time.

One should also point out the important question
about locality of the saltation process. This question arises
if the wavelength of the ripple structure is of the same

order as the relevant lengthscale of interaction of the
problem. In the present study, the interaction between the
grains in motion and grains at rest is mediate by the rep-
tating grains. Therefore the characteristic lengthscale of
interaction is the reptation length l0 which is much smaller
that the wavelength of the ripple structure [10]. Thus con-
trary to the believed idea, the formation of aeolian ripple
can be treated as a local problem.

Finally, it is worthwhile mentioning open questions.
One of the great challenge is to evaluate precisely all
the phenomenological parameters of our model from the
experiments. This is in principle possible and the recent
experiment carried out in Rennes [15] should bring us
valuable information about the collision process between
impacting grains and static granular bed. It can be also in-
teresting to investigate what happens if one consider two
spatial dimensions. Is there an instability corresponding
to the transverse meandering of the ripples?

We would like to thank O. Terzidis, P. Claudin and J.-P.
Bouchaud for very useful discussions. Through this work, we
have also closely interacted with C. Misbah and Z. Csahok.
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